撥水性、抗菌・抗ウイルス性、紫外線遮蔽性を併せ持つ 新規酸化物固体材料の開発

東京工業大学物質理工学院

中島 章

Effect of atom substitution on the hydrophobicity, antibacterial and antiviral properties of La₂Mo₂O₉ (LMO) was investigated by using Ce (LCMO) with citric acid polymerization method. The sintered bodies showed hydrophobicity by exposure to ambient air. Although antibacterial activity of LCMO was inferior to that of LMO against *Staphylococcus aureus* and *Escherichia coli*, it was sufficient for practical use. On the other hand, LCMO exhibited higher or similar antiviral activity than LMO against *bacteriophage Qβ*, and *bacteriophage φ6*. LCMO absorbed ultraviolet with little photocatalytic activity. This material possesses hydrophobicity, antibacterial, antiviral, and ultraviolet shielding properties, simultaneously. It should be a promising material for the fusion of makeup and medicine.

1. 緒 言

近年、新型Φコロナウイルス(COVID-19)の世界的な流 行により、様々なウイルスの世界的な大流行(ウイルスパ ンデミック)の脅威が高まっている。一度ウイルスパンデ ミックが発生すると、医療機関でワクチンの接種が可能に なるのには少なくとも数ヶ月を要するため、「予防」や「拡 大抑制」に関する研究は喫緊の課題となっている。

無機系の抗ウイルス材料は有機系に比べて歴史が浅い。 しかしながら、様々なウイルスに対して効果があり、比較 的広い温度範囲で適用可能であり、ウイルスが耐性を獲得 しにくい等の特徴を有することから、近年活発に研究が行 われている。これまでAg, Cu等の金属系¹⁻³⁾やTiO₂等の 光触媒系^{4,5)}、ZnO, CaO等^{6,7)}において抗ウイルス活性が 報告され、実際に使用されている。しかしながら酸化等に よる着色や活性の低下、使用環境の制限(光の必要性、ア ルカリ化)などの問題点があり、これらを解決できる、活 性の高い新たな無機抗ウイルス材料の開発が望まれている。

ごく最近、我々は希土類酸化物の撥水性⁸⁻¹²⁾とモリブデ ンの抗菌性¹³⁻¹⁶⁾に着目し、LaとMoの複合酸化物である La₂Mo₂O₉(以下LMO)の粉末および焼結体をクエン酸重 合法¹⁷⁾と常圧焼結法で作製したところ、この物質が抗ウ イルス活性と抗菌性、撥水性を併せ持つ新規の無機抗ウ イルス材料であることを見出した¹⁸⁾。この材料の粉末は、 グラム陰性菌である大腸菌とグラム陽性菌である黄色ブド ウ球菌、エンヴェロープを持たないウイルスであるバク テリオファージQβ(以下Qβ)、エンヴェロープを持つウ

Preparation of hydrophobic complex oxides with antibacterial, antiviral, and ultraviolet shielding properties

Akira Nakajima

Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology イルスであるバクテリオファージΦ6(以下Φ6)のいずれ に対しても6時間で2桁以上(99%以上)の抗菌・抗ウイル ス活性を示す。しかしながらCOVID-19や新型インフル エンザと同じタイプであるΦ6に対する活性は、他の菌や Qβに比べて低いという問題点があった。

本研究では、 $\Phi6$ に対する抗ウイルス活性の向上に加 え、化粧品への応用を意識して紫外線遮蔽性能を併せ持 つ、これまでにない酸化物材料の開発を目指して、LMO の元素の一部を他の元素で置換することを検討した。本研 究では置換する元素としてCeを選択した。CeはLaと同 様に比較的安価な希土類元素であり、その酸化物は抗菌活 性を発現する¹⁹⁻²²⁾とともに紫外線遮蔽能があることが知 られている²³⁻²⁵⁾。事前に予備実験を行ったところ、Ceは Ce(III)と Ce(IV)の 2つの価数を持つことから、Ceの添加量 が多くなると、単相の複合酸化物が得られにくいことが分 かった。本報告ではLaサイトの10%をCeで置き換えた La_{1.8}Ce_{0.2}Mo₂O₉(以下LCMO)の粉末を作製しLMOとの 活性比較を行った結果について述べる。

2. 方法

2.1. 試料の作製

出発原料として、La源にLa (NO₃)₃·6H₂O、Mo源に (NH₄)₆ Mo₇O₂₄·4H₂O、Ce源にCe (NO₃)₃·6H₂Oをそれぞれ 精製せずにそのまま用いた。LMOでは、硝酸ランタン (2.5g)とモリブデン酸アンモニウム (1.0g)の粉末をそ れぞれ10mLの蒸留水に溶解させ、LaとMoのモル比が La:Mo=1:1になるようにこれらの水溶液を混合した。 LCMOでは、硝酸ランタン (2.25g)と硝酸セリウム (0.25g) の粉末をそれぞれ8mL,2mLの蒸留水に溶解させ、Laと Ceのモル比がLa:Ce=9:1になるようにこれらの水溶液 を混合した。その後モリブデン酸アンモニウム (1.021g) の粉末を10mLの蒸留水に溶解させ、(La+Ce)とMoのモ ル比が(La+Ce):Mo=1:1になるように混合した。

続いて蒸留水で溶解させた濃度2.31 mol/Lのクエン酸

水溶液を金属イオン(La+Ce+Mo)とクエン酸のmol比が、 (La+Ce+Mo):クエン酸=1:2になるようにこれらの混 合溶液に加えて10分間撹拌した。その後エチレングリコ ールとクエン酸とのmol比が2:3になるように、上記の 溶液にエチレングリコールを添加した。この溶液を80℃ で6時間撹拌し、エステル化させることにより前駆体を得 た。得られた前駆体は200℃で24時間、大気雰囲気下で 乾燥し、得られた乾燥粉末を乳鉢で10分間粉砕した。こ の前駆体粉末を500℃(LMO)または550℃(LCMO)で 12h大気下で仮焼し、LMO, LCMOの各粉末を作製した。 以後これらを仮焼粉末と記述する。

得られた仮焼粉末約0.15gに成形助剤として体積分率 2%のエチレングリコールを混合し、100MPa, 3min保持 の条件で、一軸加圧成形して成形体を得た。得られた成形 体は大気雰囲気下で900℃, 12hの焼成を行うことにより、 焼結体を作製した。

得られた粉末の微構造は走査型電子顕微鏡 (FE-SEM, 日本電子, JSM 7500 F, Japan) を用いて観察した。粉末の 比表面積は窒素吸着法 (MicrotracBEL, BEL SORP mini, Japan)を用いて測定した。粉末の結晶相はCu Ka線源 (40kV, 30mA) を用いて、X線回折 (XRD, SHIMAZU, XRD-6100, Japan) より評価した。粉の組成はICP発光 分析装置 (ICP-OES, 5100 VDV, Agilent Technologies, USA) で確認した。光吸収性能の評価には、可視紫外分 光法(V-660,日本分光)を用いた。焼結体の密度はアル キメデス法により算出した。焼結体の表面粗さは、レ ーザー顕微鏡 (3D Measuring Laser Microscope, LEXT OLS4000, OLYMPUS, Japan) で測定した。作製した焼結 体の濡れ性の評価を行うために、3µLの水滴に対する接 触角 (Dropmaster 500 協和界面科学株式会社)を測定した。 焼結体表面の化学組成は、XPS(X-ray Photoelectron Spectrometer 5500MT; PerkinElmer Inc., USA)を用いて 評価した。励起X線はAl Kα (14 kV, 300 W)を用いた。

2.2. 抗菌・抗ウイルス活性試験フィルム密着法)

作製したLMO, LCMOの各粉末はそれぞれエタノール で分散させ、サスペンションを作製した(試料粉末:エタ ノール=1mg:1mL)。このサスペンション0.15mLをガ ラス基板(25mm×25mm)上に均一に塗布し、100℃で 30分乾燥・滅菌を行った。この塗布~滅菌までの工程を 3度繰り返すことにより試料粉末が均一に載っている試料 基板を作製した。

2.2.1. 抗菌試験

抗菌活性試験では黄色ブドウ球菌 (NBRC 12732) と大腸 菌 (NBRC 3972) を用いた。抗菌活性試験ではISO 17094, JIS R 1752 に記載されている「フィルム密着法」を用いて 抗菌活性の評価を行った。まず初めに大腸菌と黄色ブド

ウ球菌の栄養を含む寒天であるNA (Nutrient Agar) 培地 上で37℃,18時間の条件下で培養を行った。その後、栄 養源のNB(Nutrient Broth)を滅菌水で500倍に希釈し て1/500NB溶液を作製し、NA培地上で培養を行った大 腸菌、黄色ブドウ球菌を1/500NB中に溶解させ、およそ 2.0×10⁶ cfu/mLの濃度になるように菌液の濃度を調整し た。粉末を塗布した試料基板上に作製した菌液 50 µL (コ ロニー数=10⁵ cfu 相当)を乗せ、透明フィルムで密着させた。 その後、湿度が調節された室温での環境下で暗所で保持 し、所定の時間(0,2,4,6時間)が経った試料基板を5mL O SCDLP (soybean casein digest broth with lecithin and polysorbate) 培地に入れ、2分間振盪させることにより 試料粉末と細菌間の反応を停止した。続いて細菌を含む SCDLP 溶液をPBS (phosphate buffered saline) 溶液を用 いて希釈を行い、菌希釈溶液を作製した。その後コロニー 数を数えるためにNA培地に1mLの細菌を含んだ菌希釈 溶液を添加・混合し、37℃で48時間培養することにより 細菌のコロニーを形成した。NA培地上に存在するコロニ ー数をカウントし、得られたコロニー数を希釈倍率でかけ た値を生存菌数として抗菌活性試験前後の細菌の生存数を 求めた。粉末試料なし (control) の細菌の生存数はガラス 基板上に試料粉末を載せずにフィルム密着法による抗菌活 性を行った。また抗菌試験前に存在していた細菌の存在量 (N₀) は各々の試料の0時間における細菌の生存数とした。 コロニーカウントは2度行い、それらの平均の値を採用し た。

2.2.2. 抗ウイルス試験

抗ウィルス活性試験にはQβ(NBRC 20012)とΦ6(NBRC 105899)を用いた。まず初めに、QβとΦ6のファージ株 はISO 18061 を参照して用意した。各々培養されたファ ージは1/500NB を用いておよそ2.0×10⁷ pfu/mLの濃 度になるようにウイルス液の濃度を調整した。粉末を塗 布した試料基板上に作製したウイルス液50µL(プラーク 数=106pfu相当)を乗せ、透明フィルムで密着させた。そ の後,湿度が調節された室温での環境下で暗所で保持し、 所定の時間(0,2,4,6時間)が経った試料基板を5mLの SCDLP培地に入れ、2分間振盪させることにより試料粉 末とウイルス間の反応を停止した。続いてウイルスを含む SCDLP溶液をPBS溶液を用いて希釈を行い、ウイルス希 釈溶液を作製した。その後、Qβは緑膿菌(NBRC 14084) に、Φ6は大腸菌 (NBRC 106373) にそれぞれを10分間混 和、感染させた。その後プラーク数を数えるために1mL のウィルスを含んだ希釈溶液を0.5% LB(Luria-Bertani medium) 培地ナンカンと混合し、1.5% LBナンカン培地 上に添加、37℃で48時間培養させることによりウイルス のプラークを形成した。その後のLB培地上に存在するプ ラーク数をカウントし、得られたプラーク数を希釈倍率で

かけた値を生存ウイルス数として抗ウイルス活性試験前後 のウイルスの生存数を求めた。粉末試料なし(control)の ウイルスの生存数はガラス基板上に試料粉末を載せずにフ ィルム密着法による抗ウイルス活性を行った。また抗ウイ ルス試験前に存在していたウイルスの存在量(N₀)は各々 の試料の0時間におけるウイルスの生存数とした。プラー クカウントは2度行い、それらの平均の値を採用した。

フィルム密着法では溶液存在下における細菌・ウイルス との接触試験のために、粉末がイオンとして溶液中に漏出 する可能性が考えられる。既往の研究報告において、粉 末と細菌・ウイルスの"直接的接触"と粉末から溶け出した イオンと細菌・ウイルスの"間接的接触"では細菌・ウイル スの死滅のしやすさが異なるために粉末から溶け出すイ オンの量は非常に重要になる^{18,26)}。そのため作製した各 試料粉末の1/500NB 溶液に対する金属イオン溶出量と溶 液中のpH値を測定した。溶液中での試料粉末の振盪時間 は2時間とし、100回/分の速さで振盪した。振盪させた 粉末を含むイオン漏出液をシリンジで採取しフィルターを 用いて粉末を除去し、漏出したイオンのみを含むイオン 溶液を作製した。得られた溶液はpH測定 (HM-21P 東亜 DKK株式会社)、ICP発光分析装置 (ICP-OES, 5100 VDV, Agilent Technologies, USA) による溶解金属イオン量の測 定を行った。

本研究では合成したLMO, LCMOだけでなく、関連す る市販の酸化物試薬(La₂O₃ (99.99%), CeO₂ (99.5%), MoO₃ (99.0%))についても同一条件で評価を実施した。

3. 結果および考察

3.1. 粉体、焼結体特性および撥水性

得られた試料粉末のX線回折図形をFig.1に示す。得 られた粉末はいずれも概ね単相のLa₂Mo₂O₉(card No. 28-0509)であった。SEM観察の結果、1次粒子径は50-100nm程度であった(Fig.2)。ICP分析から、得られた粉 末は仕込み通りの組成比であることが確認された。

Table 1 に各粉末の ICP-MS によるイオン漏出量, pH, 比表面積測定の結果を示す。比表面積はLMO と LCMO は

Fig. 1 XRD patterns of prepared powders.

Fig. 2 SEM micrographs of prepared powders and sintered bodies: (a) & (b) LMO, and (c) & (d) LCMO.

7~10m²/gであった。イオン漏出前の1/500NB溶液の pHは7.8であった。MoO₃, CeO₂はいずれも、Laとの複 合酸化物よりも溶解しやすい傾向を示した。MoO3の水に 対する溶解度は3.4mmol/L(28℃)²⁷⁾であるが、La₂O₃, CeO₂の溶解度はいずれもほぼ不溶^{28,29)}であり、漏出量の 結果は溶解度の違いと概ね一致する。La₂O₃は試薬酸化物 の中で最も漏出量が低く、Mo, Ceと複合酸化物を形成す ると漏出量が高くなる傾向がみられる。La₂O₃の溶解度が 低いため、Mo, Ceの溶出が抑制され、これらのイオンに 徐放性が付与されることが分かる。また、合成した複合酸 化物ではLaとMoの漏出量のオーダーが概ね同程度であ ることから、Moの溶解がLaの溶解を誘発していることが 考えられる。MoO₃は漏出量が多い上にpHを大きく低下 させる効果があることが分かる。これは前報¹⁸⁾で考察し たように、MoO₃の溶解によりヒドロニウムイオンの濃度 が増大するためである。単純酸化物のpHの変化の序列は

Table 1 Results of pH and dissolved ion concentration in the water with 1/500NB solution, with the specific surface areas of samples.

	pН	SSA [m²/g]	La[µmol/L]	Ce[µmol/L]	Mo[µmol/L]
LMO	5.26	6.8	168	N.D.	299
LCMO	5.77	10.4	75	0.43	112
La_2O_3	6.60	0.6	2	N.D.	N.D.
MoO ₃	3.35	1.7	N.D.	N.D.	3992
CeO ₂	5.46	3.3	N.D.	4	N.D.

 $La_2O_3 > CeO_2 > MoO_3 となり、MoO_3, CeO_2 はいずれも$ Laとの複合酸化物となることでpHが高くなった。

得られた焼結体の結晶相も同様にLa₂Mo₂O₉であった。 アルキメデス法により求めた焼結体の相対密度はLMOは 96%, LCMOは94%であった。各焼結体の表面のSEM写 真をFig.2に示す。焼結体の平均表面粗さ(Ra値)は、そ れぞれ 0.535 µm (LCMO)、0.395 µm (LMO) であり、違 いは無視できるレベルであった。焼成後大気下暗所で保 持した際の、保持時間に対する焼結体表面の接触角変化 と、保持時間に対する焼結体表面の炭素量の金属元素に対 する割合をFig. 3(a), (b)にそれぞれ示す。LMOと同様に焼 成直後はLCMOは親水的であるが、その後は急速に接触 角が増大することが分かる。この現象は、焼成直後の焼結 体表面は清浄表面であるため、初期は大気中での濃度が高 い水分子の吸着が進行して低い接触角を示すが、時間経過 に従い、表面の水分子は徐々に大気中の有機物に置き換わ るために生じると考えられる。LCMOはLMOよりも撥水 化が速く、有機物濃度の上昇も速い。これは希土類である Ceの高い撥水性⁹⁾が影響しているものと思われる。撥水 化した各試料に対し、オゾン照射前後の焼結体の撥水性の 変化を確認するために真空紫外光を大気中に照射すること でオゾンを発生させ、焼結体表面の清浄を行った。結果を Fig. 4に示す。LMOで2週間かかっていた撥水性の再現 がLCMOでは8日に短縮され、撥水化速度の向上が確認

Fig. 3 (a) Contact angle change and (b) the surface carbon ratio for LMO and LCMO ceramics during storage in ambient air after firing.

された。LCMOはこのように優れた自己撥水性を示すた め、有機物との親和性が高いことが予想される。

3.2. 抗菌・抗ウイルス活性

Fig. 5(a), (b)に本研究で合成した試料および試薬酸化物 の、大腸菌に対する抗菌活性を示す。Laとの複合酸化物 では活性序列は、LMO > LCMO であり、試薬酸化物では、 $MoO_3 > La_2O_3 >> CeO_2 となった。CeO_2 には抗菌活性は$ 殆ど認められなかった。

La₂O₃の抗菌効果については先行研究³⁰⁻³²⁾があり、リ ン酸吸着による栄養阻害の効果が報告されている^{31,32)}。 LMOにはLaとMoの相乗的な効果が見られ、La₂O₃や MoO₃よりも高い抗菌活性を示した。抗菌活性の機構を検 討するため、我々はフィルム密着試験によるアルカリフ オスファターゼ酵素(ALP)の減少率の算出を行った。Fig. 6に実験結果を示す。減少率を比較するとMoO₃, La₂O₃、 LCMO, LMOがALP酵素を多く不活化させていることが 明らかになった。ALP減少率と抗菌活性値を比較すると 大きな傾向は一致しており、抗菌作用の機構には、ALP 酵素などの酵素タンパク質の不活化が影響していることが 考えられた。

Fig. 5 (c), (d)に本研究で合成した試料および試薬酸化物の、黄色ブドウ球菌に対する抗菌活性を示す。傾向は大腸菌と同様であり、これらのことからCeの元素置換による

効果は、菌に対しては少ないことが明らかになった。しか しながらLCMOであっても6時間で3ケタを超える十分 に高い抗菌活性を示すことが分かった。

Fig. 7に、本研究で合成した試料および試薬酸化物の 抗ウイルス活性を示す。Q β に対しての抗ウイルス活性 は、LMOはLCMOとほぼ同程度であり、 Φ 6に対しては LCMO > LMOとなった。またCeO₂はほとんど活性を示 さないのに対し、La₂O₃は一定の活性を示した。試薬酸化 物の活性序列は、MoO₃ > La₂O₃ > CeO₂となった。

Moの漏出イオンはpH6以下ではポリ酸を形成する可能 性が高く、また反応液中にはリンをはじめとする各種のイ オンも存在することから、Moはこれらのイオンとヘテロ ポリ酸を形成している可能性がある。ポリ酸は水溶液中で 負の電荷を持ち、抗ウイルス活性を示すことが報告されて いる³³⁻³⁶⁾。JaddらはHIVウイルス(エンベロープを持つ ウイルス)に存在する逆転写酵素の活性部位であるLysine 残基(Lys41, Lys43, Lys55)のカチオン部位にポリ酸が 静電相互作用的に吸着するとHIVウイルスを不活化する ことを報告した³⁷⁾。また、宿主と脱着に寄与する部位で あるノイラミニダーゼ(NA)の蛋白質分解酵素との結合に はLysine残基が必要であることが知られている³⁸⁾。その ために、ポリ酸の存在によりLysine残基の不活化が生じ、 宿主から脱着ができずに増殖を抑える可能性が考えられ る。一方、ノンエンベロープウイルスの表面にも宿主との

Fig. 5 Results of antibacterial activity experiments against (a) & (b) Escherichia coli, and (c) & (d) Staphylococcus aureus.

Fig. 6 Relation between antibacterial activity and ALP inactivation rate

Fig. 7 Results of antiviral activity experiments against (a) & (b) bacteriophage $Q\beta$, and (c) & (d) bacteriophage $\Phi 6$.

結合に用いられるスパイク(VP4)の活性部位に正電荷を持 つLysine 残基が存在する³⁹⁾ ことからHIVのエンベロープ ウイルスと同様に、結合部位をポリ酸との静電相互作用に よる強い吸着作用により不活化させる可能性がある。

また、La(回)やCe(回)のイオンには、ホスト細胞がウイル スのRNA再生を抑制する効果があることが報告されてい る⁴⁰⁾。CeO₂の活性が低いのは、イオンの多くがCe(IV)で あるためかも知れない。Φ6に対しては、La(回)の活性はあ まり見られなかった。ウイルスの特性の違いによるものと 思われるが、現状では理由は明らかでない。一方、LCMO がLMOよりも高い活性を示すことからCeの効果が見られ る。CeO₂単独では殆ど活性を示さないことから、Ceイオ ンとMoイオンとの相乗的な効果が関与していることが考 えられる。

希土類元素とポリ酸の組み合わせによる抗ウイルス活性に ついてはいくつか報告されており⁴¹⁻⁴³⁾、Liuらはタングステ ン系のヘテロポリ酸において、ポリ酸のWイオンの一部 が還元されたヘテロポリブルーの状態ではCeイオンの方 がLaイオンよりも高い抗インフルエンザウイルス活性を 与えることが報告している⁴²⁾。また、KatoやShioharaらは、 Ceイオンの高い酸化力に起因するMars - van Krevelen 機構^{44,45)}が、NiやMnなどの多価金属の酸化物と組み合わ せることで増大することを報告している^{46,47)}。実際、常 温でLCMOとアルコールを反応させることでCe(IV)の割合 が減少し、Moの一部が還元されてMo(V)が生じることが XPS分析により確認できていることから、Ce 自体の強い 酸化力が関与してポリ酸の抗ウイルス効果を高めている可 能性が示唆される。現状では未だ支配的な機構は明確では ないが、Ceの効果はエンヴェロープを有するΦ6の方が、 エンベロープを持たないQβより顕著であることが考えら れる。ポリ酸とCeイオンの組み合わせは、Φ6と同じ型の インフルエンザウイルスやCOVID-19等に有効である可 能性がある。Fig. 8に今回合成した試料のΦ6の実際のプ ラークの変化を示す。6時間でプラークの数が大幅に減少 していることが分かる。なお、今回作製したLMO, LCMO は、いずれの試料においてもMDCK細胞 (CCL-34, イヌ 腎臓尿細管上皮細胞由来の細胞株)に対する顕著な毒性は みとめられなかった。

今回作製したLaの複合酸化物の水に対する漏出量は Ag₂Oのそれ(0.86µmol/L⁴⁸⁾)よりは多いが、MoO₃より は少ない。いずれも粉末も白色または薄い黄色であるた め、意匠性を損なう可能性が低く、様々なところに応用が 可能である。MoO₃は水への溶解度が高いため、初期は抗 菌・抗ウイルスを発現すると思われるが、すぐに失活す る。成分を徐放するLa複合酸化物は、失活しづらく、撥 水性も与えるため、広い用途に適用できる。今回作製した LCMOは薄い黄色を呈し、紫外・可視領域に吸収が見ら れる(Fig. 9)が、光触媒活性は確認できなかった。このこ とから紫外線吸収効果のある抗ウイルス材料としての用途 が期待される。

また、今回の抗菌・抗ウイルス活性の評価は、これらの 撥水性の寄与は加味されていない。撥水性表面は水と接触 しにくいことから抗菌活性が向上することが報告されてい る⁴⁹⁾。今後、撥水性が抗菌・抗ウイルス活性へ及ぼす寄

Fig. 8 Practical photographs of plaques for LMO (a & b) and LCMO (c & d) against Φ 6 between 0 h (a & c) and 6 h (b & d).

与について、定量的な検討を行っていく必要がある。

4. 総 括

本研究で開発したLCMOは、自己撥水性、紫外線吸収能、 抗菌・抗ウイルス性を兼ね備えた新規の酸化物粉末材料で ある。これまで撥水性や紫外線吸収能を有する化粧品は存 在したが、新たな機能として抗菌・抗ウイルス活性が添加 されると、人を彩る「化粧」という活動をする人が、「健康」 という価値を新たに得ることができるようになる可能性が ある。これまでも化粧をすることで日焼け等の肌のトラブ ルを防止する機能は得られているが、この材料の化粧への 応用は、これまでの概念から一歩進んで、寿命そのものを 延ばす試み、いわば化粧と医療の融合に繋がる可能性を秘 めている。単に高齢者へ生きがいを与え、健康寿命を延ば すだけでなく、ウイルス感染からの防止を通じて、本当の 意味での健康獲得に繋がることが考えられる。

(References)

- S. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra, M. Galdiero, Silver nanoparticles as potential antiviral agents, *Molecules*, 16, 8894–8918 (2011).
- K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P. J. J. Alvarez, Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal, *Water Research*, 43, 715–723 (2009).
- 3) S. Gaikwad, A. Ingle, A. Gade, M. Rai, A. Falanga, N. Incoronato, L. Russo, S. Galdiero, M. Galdiero, Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3, *Int. J. Nanomedicine*, 8, 4303–4314 (2013).
- 4) R. Nakano, H. Ishiguro, Y. Yao, J. Kajiok, A. Fujishima, K. Sunada, M. Minoshim, K. Hashimoto, Y. Kubota, Photocatalytic inactivation of influenza virus by titanium dioxide thin film, *Photochem. Photobiol. Sci.*, 11, 1293–1298 (2012).
- 5) C. Zhanga, Y. Li, D. Shuai, Y. Shen, D. Wang, Progress and challenges in photocatalytic disinfection of waterborne Viruses: A review to fill current knowledge gaps, *Chem. Eng. J.*, 355, 399-415 (2019).
- 6) H. Ghaffari, A. Tavakoli, A. Moradi, A. Tabarraei, F. Bokharaei-Salim, M. Zahmatkeshan, M. Farahmand, D. Javanmard, S. J. Kiani, M. Esghaei, V. Pirhajati-Mahabadi, A. Ataei-Pirkooh, S. H. Monavari, Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine, J. Biomedical Sci., 26:70, 1-10 (2019).

- K. Motoike, S. Hirano, H. Yamana, T. Onda, T. Maeda, T. Ito, M. Hayakawa, Antiviral activities of heated dolomite powder, *Biocontrol Sci.*, 13, 131-138 (2008).
- G. Azimi, R. Dhiman, H. M. Kwon, A. T. Paxson, K. K. Varanasi, Hydrophobicity of rare-earth oxide ceramics, *Nat. Mater.*, 12, 4, 315–320 (2013).
- 9) D. J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney, E. N. Wang, Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics, *Appl. Phys. Lett.*, 105, 1, 11601 (2014).
- 10) S. Sankar, B. N. Nair, T. Suzuki, G. M. Anilkumar, M. Padmanabhan, U. N. S. Hareesh, K. G. Warrier, Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods, *Sci. Rep.*, 6, 1, 22732 (2016).
- G. Carchini, M. G. Melchor, Z. Łodziana, N. López, Understanding and Tuning the Intrinsic Hydrophobicity of Rare-Earth Oxides: A DFT+U Study, ACS Appl. Mater. Interfaces, 8, 1, 152-160 (2016).
- 12) K. K. Oh, L. Kangsik, K. Zonghoon, Y. L. Kyung, W. L. Chang, J. M. Su, M. L. M. Jae, N. Clement, D. Wontae, K. Christian, L. Hyungjun, B. R. Han, Hydrophobicity of Rare Earth Oxides Grown by Atomic Layer Deposition, *Chem. Mater.*, 27, 1, 148–156 (2015).
- N. Desai, S. Mali, V. Kondalkar, R. Mane, C. Hong, P. Bhosale, Chemically Grown MoO₃ Nanorods for Antibacterial Activity Study, *J. Nanomed. Nanotechnol.*, 6, 6, 1000338 (2015).
- 14) C. Zollfrank, K. Gutbrod, P. Wechsler, J. P. Guggenbichler, Antimicrobial activity of transition metal acid MoO³ prevents microbial growth on material surfaces, *Mater. Sci. Eng.* C, 32, 1, 47-54 (2012).
- 15) K. Krishnamoorthy, M. Premanathan, M. Veerapandian, S. J. Kim, Nanostructured molybdenum oxide-based antibacterial paint: effective growth inhibition of various pathogenic bacteria, *Nanotechnology*, 25, 315101 1-10 (2014).
- 16) C. C. Mardare, A. W. Hassel, Investigations on Bactericidal Properties of Molybdenum-Tungsten Oxides Combinatorial Thin Film Material Libraries, ACS Comb. Sci., 16, 11, 631-639 (2014).
- 17) R. A. Rocha, E. N. S. Muccillo, Synthesis and thermal decomposition of a polymeric precursor of the

La₂Mo₂O₉ compound," *Chem. Mater.*, 15, 22, 4268-4272 (2003).

- 18) T. Matsumoto, K. Sunada, T. Nagai, T. Isobe, S. Matsushita, H. Ishiguro, A. Nakajima, Preparation of hydrophobic La₂Mo₂O₉ ceramics with antibacterial and antiviral properties, *J. Hazard. Mater.*, 378, 120610 (2019).
- 19) A. Arumugama, C. Karthikeyan, A. S. H. Hameed, K. Gopinath, S. Gowri, V. Karthika, Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties, *Mater. Sci. Eng. C* 49, 408-415 (2015).
- 20) A. Gupta, S. Das, C. J. Neala, S. Seal, Controlling the surface chemistry of cerium oxide nanoparticles for biological applications, *J. Mater. Chem. B*, 4, 3195– 3202 (2016).
- Y.-F. Goh, A. Z. Alshemary, M. Akram, M. R. A. Kadir, R. Hussain, In-vitro characterization of antibacterial bioactive glass containing ceria, *Ceram. Int.*, 40, 729-737 (2014).
- 22) P. Bellio, C. Luzi, A. Mancini, S. Cracchiolo, M. Passacantando, L. D. Pietro, M. Perilli, G. Amicosante, S. Santucci, G. Celenza, Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO₂ nanoparticles on bacterial outer membrane permeability, *BBA-Biomembranes* 1860, 2428-2435 (2018).
- 23) R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, T. Sato, Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO₂ via soft solution chemical process, *Solid State Ionics*, 151, 235-241 (2002).
- 24) F. Caputo, M. De Nicola, A. Sienkiewicz, A. Giovanetti, I. Bejarano, S. Licoccia, E. Traversa, L. Ghibelli, Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis, *Nanoscale*, 7, 15643-15656 (2015).
- 25) M. Aguirre, M. Paulis, J. R. Leiza, UV screening clear coats based on encapsulated CeO₂ hybrid latexes, *J. Mater. Chem. A.*, 1, 3155-3162 (2013).
- 26) K. Sunada, M. Minoshima, K. Hashimoto, Highly efficient antiviral and antibacterial activities of solidstate cuprous compounds, *J. Hazard. Mater.*, 235–236, 265–270 (2012).
- 27) Y. Inaba, K. Ishikawa, K. Tatenuma, E. Ishitsuka, Development of ⁹⁹Mo Production Technique by Solution Irradiation Method Characterization of

Aqueous Molybdate Solutions, *At. Energy Soc. Japan*, 8, 2, 142–153 (2009). [in Japanese]

- 28) M. Takaya, Y. Shinohara, F. Serita, M. Ono-Ogasawara, N. Otaki, T. Toya, A. Takata, K. Yoshida, N. Kohyama, Dissolution of Functional Materials and Rare Earth Oxides into Pseudo Alveolar Fluid, *Ind. Health*, 44, 4, 639-644 (2006).
- 29) Lange's Handbook of Chemistry 12th edition, Ed. J.
 A. Dean, McGraw-Hill Book Company, New York, pp 4-38, 4-125, (1978).
- 30) F. J. Jing, N. Huang, Y. W. Liu, W. Zhang, X. B. Zhao, R. K. Y. Fu, J. B. Wang, Z. Y. Shao, J. Y. Chen, Y. X. Leng, X. Y. Liu, P. K. Chu, Hemocompatibility and antibacterial properties of lanthanum oxide films synthesized by dual plasma deposition., *J. Biomed. Mater. Res. Part A*, 87 A, 1027–1033 (2008).
- 31) J. He, W. Wang, W. Shi, F. Cui, La2O3 nanoparticle/ polyacrylonitrile nanofibers for bacterial inactivation based on phosphate control, *RSC Adv.*, 6, 99353-99360 (2016)
- 32) J. Liu, G. Wang, L. Lu, Y. Guo, L. Yang, Facile shapecontrolled synthesis of lanthanum oxide with different hierarchical micro/nanostructures for antibacterial activity based on phosphate removal, *RSC Adv.*, 7, 40965-40972 (2017).
- 33) S. G. Sarafianos, U. Kortz, M. T. Pope, M. J. Modak, Mechanism of polyoxometalate-mediated inactivation of DNA polymerases: An analysis with HIV-1 reverse transcriptase indicates specificity for the DNA-binding cleft, *Biochem. J.*, 319, 2, 619–626 (1996).
- 34) Y. Inouye, Y. Tokutake, T. Yoshida, Y. Seto, H. Hujita, K. Dan, A. Yamamoto, S. Nishiya, T. Yamase, S. Nakamura, In vitro antiviral activity of polyoxomolybdates. Mechanism of inhibitory effect of PM-104 (NH4)₁₂H₂ (Eu₄(MoO₄ (H₂O)₁₆ (Mo₇O₂₄)₄) ·13H₂O on human immunodeficiency virus type 1, *Antiviral Res.*, 20, 4, 317-331 (1993).
- 35) M. S. Weeks, C. L. Hill, R. F. Schinazi, Synthesis, Characterization, and Anti-Human Immunodeficiency Virus Activity of Water-Soluble Salts of Polyoxotungstate Anions with Covalently Attached Organic Groups, J. Med. Chem., 3, 35, 1216-1221 (1992).
- 36) K. Dan, K. Miyashita, Y. Seto, H. Fujita, T. Yamase, The memory effect of heteropolyoxotungstate (PM-19) pretreatment on infection by herpes simplex virus at the penetration stage, *Pharmacol. Res.*, 46, 4, 357-362 (2002).

- 37) D. A. Judd, J. H. Nettles, N. Nevins, J. P. Snyder, D. C. Liotta, J. Tang, J. Ermolieff, R. F. Schinazi, C. L. Hill, Polyoxometalate HIV-1 Protease Inhibitors. A New Mode of Protease Inhibition, *J. Am. Chem. Soc.*, 123, 5, 886–897 (2001).
- 38) H. Goto, A novel function of plasminogen—binding activity of the NA determines the pathogenicity of influenza A virus, *Virus*, 54, 4, 83-91 (2004) [in Japanese].
- 39) G. Sutton, J. M. Grimes, D. I. Stuart, P. Roy, Bluetongue virus VP4 is an RNA-capping assembly line, *Nat. Struct. Mol. Biol.*, 14, 5, 449-451 (2007).
- 40) G. Wengler, G. Wengler, A. Koschinski, A short treatment of cells with the lanthanide ions La³⁺, Ce³⁺, Pr³⁺ or Nd³⁺ changes the cellular chemistry into a state in which RNA replication of flaviviruses is specifically blocked without interference with hostcell multiplication, *J. General Virology*, 88, 3018-3026 (2007).
- 41) Y.-N. Liu, S. Shi, W.-J. Mei, C.-P. Tan, L.-M. Chen, J. Liu, W.-J. Zheng, L.-N. Ji, In vitro and in vivo investigations on the antiviral activity of a series of mixed-valence rare earth borotungstate heteropoly blues, *Eur. J. Med. Chem.*, 43, 1963-1970 (2008).
- 42) J. Liu, W.-J. Mei, A.-W. Xu, C.-P. Tan, S. Shi, L.-N. Ji, Synthesis, characterization and antiviral activity against influenza virus of a series of novel manganese-substituted rare earth borotungstates heteropolyoxometalates *Antiviral Research*, 62, 65-71 (2004).

- 43) D. L. Barnarda, C. L. Hill, T. Gage, J. E. Matheson, J. H. Huffman, R. W. Sidwell, M. I. Otto, R. F. Schinazi, Potent inhibition of respiratory syncytial virus by polyoxometalates of several structural classes, *Antiviral Research*, 34, 27-37 (1997).
- 44) M. Lykaki, E. Pachatouridou, S. A.C. Carabineiro, E. Iliopoulou, C. Andriopoulou, N. Kallithrakas-Kontose, S. Boghosian, M. Konsolakisa, Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/CeO₂ catalysts, *Appl. Catal. B: Environ.* 230, 18–28 (2018).
- 45) S. Scirè, S. Minicò, C. Crisafulli, C. Satriano, A. Pistone, Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts, *Appl. Catal. B: Environ.*, 40, 43-49 (2003).
- 46) M. Shiohara, T. Isobe, S. Matsushita, A. Nakajima, Decomposition of 2-naphthol in water by TiO₂ modified with MnOx and CeOy, *Mater. Chem. Phys.*, 183, 37-43 (2016).
- 47) C. Kato, M. Shiohara, K. Sunada, T. Isobe, A. Yamaguchi, S. Matsushita, H. Ishiguro, M. Miyauchi, A. Nakajima, Decomposition of 2-naphthol in water and antibacterial property by NiO and CeO_x modified TiO₂ in the dark or under visible light, *J. Ceram. Soc. Jpn.*, 127, 688-695 (2019).
- 48) D. R. Lide, "Handbook of Chemistry and Physics" (81 ed.). Boca Raton, FL: CRC Press. pp. 4–83, 1998.
- 49) X. Zhang, L. Wang, E. Levänen, Superhydrophobic surfaces for the reduction of bacterial adhesion, *RSC Adv.*, 3, 30, 12003–12020 (2013).